Disturbance Grassmann Kernels for Subspace-Based Learning

نویسندگان

  • Junyuan Hong
  • Huanhuan Chen
  • Feng Lin
چکیده

In this paper, we focus on subspace-based learning problems, where data elements are linear subspaces instead of vectors. To handle this kind of data, Grassmann kernels were proposed to measure the space structure and used with classifiers, e.g., Support Vector Machines (SVMs). However, the existing discriminative algorithms mostly ignore the instability of subspaces, which would cause the classifiers misled by disturbed instances. Thus we propose considering all potential disturbance of subspaces in learning processes to obtain more robust classifiers. Firstly, we derive the dual optimization of linear classifiers with disturbance subject to a known distribution, resulting in a new kernel, Disturbance Grassmann (DG) kernel. Secondly, we research into two kinds of disturbance, relevant to the subspace matrix and singular values of bases, with which we extend the Projection kernel on Grassmann manifolds to two new kernels. Experiments on action data indicate that the proposed kernels perform better compared to state-of-the-art subspacebased methods, even in a worse environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Grassmann Kernels for Subspace-Based Learning

Subspace-based learning problems involve data whose elements are linear subspaces of a vector space. To handle such data structures, Grassmann kernels have been proposed and used previously. In this paper, we analyze the relationship between Grassmann kernels and probabilistic similarity measures. Firstly, we show that the KL distance in the limit yields the Projection kernel on the Grassmann m...

متن کامل

Mean polynomial kernel for face membership authentication

Face recognition techniques have gained much attention and research interests over the recent years due to their vast applications in security and authentication systems. Some of the popular approaches involve support vector machines (SVM), which can either be a binary or a multiclass classification problem, and subspace learning, where data is assumed to lie on some low dimensional manifold, s...

متن کامل

Localized LRR on Grassmann Manifolds: An Extrinsic View

Subspace data representation has recently become a common practice in many computer vision tasks. It demands generalizing classical machine learning algorithms for subspace data. Low-Rank Representation (LRR) is one of the most successful models for clustering vectorial data according to their subspace structures. This paper explores the possibility of extending LRR for subspace data on Grassma...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

A Riemannian gossip approach to decentralized subspace learning on Grassmann manifold

In this paper, we propose novel gossip algorithms for decentralized subspace learning problems that are modeled as finite sum problems on the Grassmann manifold. Interesting applications in this setting include low-rank matrix completion and multi-task feature learning, both of which are naturally reformulated in the considered setup. To exploit the finite sum structure, the problem is distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03517  شماره 

صفحات  -

تاریخ انتشار 2018